
Apache Deltacloud

David Lutterkort {lutter@redhat.com}
Marios Andreou {marios@redhat.com}
Michal Fojtik {mfojtik@redhat.com}

August 12, 2010

Contents

1 Introduction 2

1.1 Concepts . 2
1.2 Client requests . 3

1.2.1 Authentication . 3
1.3 Server responses . 4
1.4 API conventions . 4
1.5 API stability and evolution 4
1.6 Online documentation . 4

2 The API entry point 5

2.1 Features . 6

3 Compute resources and other toplevel entities 6

3.1 Realms . 6
3.1.1 GET /api/realms . 6
3.1.2 GET /api/realms/:id 7

3.2 Hardware profiles . 7
3.2.1 GET /api/hardware profiles 7
3.2.2 GET /api/hardware profiles/:id 8

3.3 Images . 8
3.3.1 GET /api/images . 9
3.3.2 GET /api/images/:id 9

3.4 Instance states . 9
3.4.1 GET /api/instance states 10

3.5 Instances . 10
3.5.1 GET /api/instances 10

1

3.5.2 GET /api/instances/:id 11
3.5.3 POST /api/instances/:id/:action 11
3.5.4 POST /api/instances/:create 11

3.6 Keys . 12
3.6.1 GET /api/keys . 12
3.6.2 GET /api/keys/:id 13
3.6.3 POST /api/keys/create 13

4 Storage resources 13

4.1 Storage volumes (in development) 14
4.1.1 GET /api/storage volumes 14
4.1.2 GET /api/storage volumes/:id 14

4.2 Storage snapshots (in development) 14
4.2.1 GET /api/storage snapshots/ 14
4.2.2 GET /api/storage snapshots/:id 14

4.3 Blob storage (in development) 15

5 Further information, errata and contributions 15

List of Figures

1 The API entry point returns an XML <link> element for
each resource collection . 5

2 Features are advertised at the API entry point 6
3 XML output showing attributes of a realm 7
4 Hardware profiles expressing fixed, range and enum values

for attributes . 8
5 XML description of an image 9
6 Part of the finite state machine of an instance 11
7 XML description of a specified instance 12
8 XML description of a key of type :key 13
9 XML description of a storage volume 14
10 XML description of a storage snapshot 14

2

1 Introduction

Apache Deltacloud is a REST-based, cloud abstraction API. Deltacloud
makes it possible to manage resources in different IaaS clouds using a single
REST-based API. A series of back-end drivers ‘speaks’ each cloud provider’s
native API and the Deltacloud Core Framework provides the basis for im-
plementing drivers as needed for other/new IaaS cloud providers. Apache
Deltacloud currently supports: Amazon EC3 and S3, Rackspace Cloud
Servers and Cloud Files, Gogrid Cloud Servers, Terremark Vcloud Express,
Rimuhosting VPS, Red Hat Enterprise Virtualisation (rhev-m) and Open-
nebula.
The Apache Deltacloud project aims at addressing two issues:

1. Avoiding lockin by providing an API abstraction that can be imple-
mented as a wrapper around a large number of clouds, freeing users
of cloud from dealing with the particulars of each cloud’s API.

2. Providing a basis for open-source evolution of cloud API’s.

1.1 Concepts

The following terms are used in the Apache Deltacloud API and are intro-
duced here to aid the reader. Each represents an entity in the ’back-end’
provider cloud such as a running virtual server or a server image. It should
be noted that not all clouds support all of the following entities. Only the
appropriate entity collections are exposed for a given back-end driver.

Realms: A distinct organizational unit within the back-end cloud such as
a datacenter. A realm may but does not necessarily represent the geograph-
ical location of the compute resources being accessed.

Instances: A realized virtual server, running in a given back-end cloud.
These are instantiated from server Images.

Images: These are templates (virtual machine images) from which In-
stances are created. Each Image defines the root partition and initial storage
for the Instance operating system.

Instance States: These represent the Instance lifecycle; at any time an
Instance will be in one of start, pending, running, stopped, shutting down,

3

finished.

Keys: These represent credentials used to access a running Instance.

Storage Volume: This is a virtual storage device that can be attached to
an Instance and mounted by the OS therein.

Storage Snapshot: These are copies, snapshots of a Storage Volume at a
specified point in time.

Blob Storage: Generic ‘key ==> value’ based data store (such as Rackspace
CloudFiles or Amazon S3). This part of the API is currently under devel-
opment.

1.2 Client requests

In keeping with REST, clients make requests through HTTP, with the usual
meanings assigned to the standard HTTP verbs GET, POST, PUT, and DELETE.
Beyond the generally accepted REST design principles, Apache Deltacloud
follows the guidelines discussed in 1.

The URL space of the API is structured into collections of resources
(entities, objects). The top level entities used in the Deltacloud API are:
Realms, Images, Instance States, Instances, Keys, Storage Volume,

Storage Snapshots, Blob Storage.

1.2.1 Authentication

The Deltacloud API server is stateless, and does not keep any information
about the current client. In particular, it does not store the credentials for
the backend cloud it is talking to. Instead, it uses HTTP basic authentica-
tion, and clients have to send the username/password for the backend cloud
on every request.

The specifics of what needs to be sent varies from cloud to cloud; some
cloud providers employ a username and password for API access, whilst
others use special-purpose API keys.

1http://fedoraproject.org/wiki/Cloud_APIs_REST_Style_Guide

4

1.3 Server responses

The server can respond to client requests in a variety of formats. The
appropriate response format is determined by HTTP content negotiation.
The primary format is XML, which is the basis for this document. Output is
also available as JSON and, mostly for testing, as HTML.

In general, list operations, such as GET /api/realms will only provide
a brief list of the objects of this resource type; full details can be retrieved
by making a request GET /api/realms/:id to the URL of the individual
realm.

1.4 API conventions

Any XML element that represents an object, such as an instance has an
href and a id attribute. The href provides the URL at which object-
specific actions can be performed (e.g., a GET to the URL will give details
of the object). The id provides an identifier of the object and this is unique
within its collection (i.e., unique id for each Instance, Image, Realm etc).

Generally, objects also have a human-readable name; the name is pro-
vided in a <name/> child element of the object’s container tag.

1.5 API stability and evolution

Future changes to the API will be made in a manner that allows old clients
to work against newer versions of the the API server.

1.6 Online documentation

Automatically generated documentation can be accessed on every server run-
ning the Deltacloud Core API service through the URL http://localhost:

3001/api/docs/. The documentation is both available in HTML and XML,
though the XML format is not part of this specification, and may change in
an incompatible way.

5

2 The API entry point

Any part of the official API can be reached through the main entry point,
by default http://localhost:3001/api. The entry point list the resources
the server knows about. Currently, these are:

• Instances

• Instance states

• Images

• Realms

• Hardware profiles

• Keys

• Blob storage (in development)

• Storage volumes and snapshots (in development)

Figure 1: The API entry point returns an XML <link> element for each
resource collection

Specific implementations for the Apache Deltacloud API may not sup-
port all resource types defined by this API. For example, a Deltacloud in-
stance pointing at a storage-only service will not expose compute resources
like instances and hardware profiles.

6

Figure 2: Features are advertised at the API entry point

2.1 Features

The Apache Deltacloud API defines the standard behavior and semantics
for each of the resource types as a baseline for any API implementation; it
is often desirable to enhance standard API behavior with specific features.
The API also defines all the features that can be supported by an API
implementation - each of them has a fixed, predefined meaning. As an
example, the feature user-name indicates that a user-specified name can be
assigned to an instance when it is created. Features are advertised in the
top-level entry point as illustrated by Figure 2.

3 Compute resources and other toplevel entities

The compute resources are instances, instance states, images, realms, and
hardware profiles. Not strictly a compute resource, we deal with keys here,
too, since they generally are used to access instances (e.g., via ssh).

3.1 Realms

A realm represents a distinct unit within the same cloud, such as a data
center. The exact definition of a realm is left to the cloud provider. Generally
speaking, going from one realm to another within the same cloud may change
many aspects of the cloud, such as SLA’s, pricing terms, etc.

3.1.1 GET /api/realms

List all realms. Can be filtered by adding a request parameter architecture
to the realms that support a specific architecture such as i386.

7

3.1.2 GET /api/realms/:id

Provide the details of a realm. Currently, these are a name and a state.
The name is an arbitrary label with no specific meaning in the API. The
state can be either AVAILABLE or UNAVAILABLE, as shown in Figure 3.

Figure 3: XML output showing attributes of a realm

3.2 Hardware profiles

A hardware profile describes the sizing of a virtual machine in a cloud and
prescribes details such as how many virtual CPU’s, how much memory or
how much local storage an instance might have.

Since clouds differ sharply in how virtual machine sizing is represented
and influenced, hardware profiles provide a generic mechanism to express siz-
ing constraints. For each dimension (amount of memory etc.), the hardware
profile can express one of the following:

1. Size is fixed in this dimension, e.g. instances all have 2GB of memory,
or

2. Size can be varied freely within some range, e.g. instances can have
from 1GB to 4GB of memory, or

3. Size can be chosen from a predefined set of values, an enumeration,
e.g., instances can have 512 MB, 1 GB or 4GB of memory.

When creating a new instance, a client must specify the hardware profile

on which the instance is based. Optionally a client can also specify values for
the variable dimensions of the given hardware profile (otherwise the defaults
specified within each hardware profile are used).

3.2.1 GET /api/hardware profiles

Produce a list if all hardware profiles availaible with this cloud.

8

3.2.2 GET /api/hardware profiles/:id

The attributes of a hardware profile consist of a human-readable name and a
list of <property/> elements. Each property defines possible values along a
sizing dimension. In the example below, the large hardware profile defines
instances with exactly 2 virtual CPUs, memory from between 2GB and 4GB
and local storage that can either be 850MB or 1GB. The default value for
each dimension is indicated by the value attribute on the property element.

In addition to the sizing constraints, the hardware profile also lists which
parameters can be used in instance operations to change the value of a
property. In the example shown in Figure 4, only values for the instance
create operation can be changed.

Figure 4: Hardware profiles expressing fixed, range and enum values for
attributes

3.3 Images

Images are used to launch instances. An image has human-readable name

and description attributes as well as an architecture. Each image rep-

9

resents a virtual machine image in the back-end cloud, containing the root
partition and initial storage for an instance operating system.

3.3.1 GET /api/images

Return a list of all images available in the back-end cloud.

3.3.2 GET /api/images/:id

Describe on image in detail. The architecture element indicates what
CPU architecture this image expects. It can be either x86 64 for Intel-
based 64 bit processors, and i386 for Intel-compatible 32 bit processors.
The XML description of the image is as shown in Figure 5

Figure 5: XML description of an image

3.4 Instance states

Each cloud defines a slightly different lifecycle model for instances. In some
clouds, instances start running immediately after creation, in others, they
enter a pending state and they need to be explicitly started to become
running.

These differences between clouds are modelled by expressing the lifecycle
of an instance as a finite state machine and capturing this in a instance states

entity. The start state of the automaton is start and its final state is
finished. The API defines the following states for an instance, as in Table
1.

The actions (state transitions) possible for an instance are as shown in
Table 2. The precise actions that can be performed on a specific instance are
expressed as part of the details for that instance (in action attributes, as
shown in Figure 7). An example of the finite state machine for an instance

is shown in Figure 6.

10

State Meaning

start Instances are in this state before they are created
pending Creation of the instance has been requested and is in progress
running The instance is running
shutting down A shutdown has been requested for the instance and is in progress
stopped The instance is stopped
finished All resources for the instance has been freed

Table 1: Instance states and their meanings

Action Meaning

start Start the instance

stop Stop/shutdown the instance

reboot Reboot the instance

destroy Stop the instance and completely destroy it

Table 2: Transitions between instance states

3.4.1 GET /api/instance states

The instance states entity defines the transitions possible between the var-
ious states of an instance, and these are back-end cloud specific. In effect
instance states defines the finite state machine for instances from the given
cloud. An example is shown in Figure 6 (note that the diagram does not
show the full instance state description).

3.5 Instances

An instance represents the focus of all cloud compute activity: a running
virtual machine. An instance is created from an image, with a speci-
fied hardware profile and in a given realm. Besides these attributes,
each instance also has a human readable name, an owner id, a state,
public addresses and private addresses (IP address). As shown in Fig-
ure 7, each instance also has an actions attribute (which will depend on
current state) as well as a key.

3.5.1 GET /api/instances

Produce a listing of all current Instances in the given cloud (belonging to
the specified account).

11

Figure 6: Part of the finite state machine of an instance

3.5.2 GET /api/instances/:id

Get the details for a specific Instance. The XML returned by the server is
as shown in Figure 7.

3.5.3 POST /api/instances/:id/:action

The valid actions for an instance are as specified by the instance states en-
tity. At a given time and depending on the current instance state, the set of
permissible actions is as reported in the response to GET /api/instances/:id

(an example is shown in Figure 7).

3.5.4 POST /api/instances/:create

Create a new instance. At a minimum clients must specify the image from
which the virtual machine instance is to be created. Optionally a client
may also specify a hardware profile and realm (with default values used
otherwise). The details of the new instance are returned in response to this
operation.

12

Figure 7: XML description of a specified instance

3.6 Keys

A key captures the credentials required to access an Instance. These could be
reported by the back-end cloud during instance creation, in which case they
are captured from response in a key of type :password (with :username and
:password attributes). For other cloud providers, credentials are specified
by the client itself. In this case credentials are represented by a key of type
:key (with :fingerprint and :private key attributes). Figure 8 shows a
key of type :key.

3.6.1 GET /api/keys

This gives a listing of all available keys.

13

3.6.2 GET /api/keys/:id

Get the XML description for a specified key, as shown in Figure 8

Figure 8: XML description of a key of type :key

3.6.3 POST /api/keys/create

Some back end cloud providers allow a client to create new credentials for
accessing Instances. The parameters (key attributes) required by this func-
tion will depend on the back-end and are specified in the relevant driver.
At present only the EC2 driver implements a key create method and this
requires the name parameter to be specified to create the EC2 keypair. This
feature will be further implemented as support is provided by back-end
clouds (e.g., Terremark Vcloud Express has recently added support for key
management).

4 Storage resources

Storage resources are divided into two groups: storage volumes can be at-
tached to a running instance (mountable by the instance OS), and blob

storage which represents a simpler ‘key < −− > value’ based data store
(such as Rackspace CloudFiles or Amazon S3). Storage snapshots represent
a storage volume, a backup of which is created at a particular point in time
(a snapshot).

14

4.1 Storage volumes (in development)

4.1.1 GET /api/storage volumes

List all storage volumes.

4.1.2 GET /api/storage volumes/:id

Get the details for a specic storage volume, as shown in Figure 9.

Figure 9: XML description of a storage volume

4.2 Storage snapshots (in development)

4.2.1 GET /api/storage snapshots/

List all available storage snapshots.

4.2.2 GET /api/storage snapshots/:id

Get all details for a specified storage snapshot, as shown in Figure 10.

Figure 10: XML description of a storage snapshot

15

4.3 Blob storage (in development)

5 Further information, errata and contributions

• General Deltacloud site:
http://deltacloud.org/,

• Deltacloud API incubation status page at Apache Incubator:
http://incubator.apache.org/projects/deltacloud.html,

• IRC channel ‘#deltacloud’ (freenode),

• ‘deltacloud-dev’ at Apache incubator: deltacloud-dev@incubator.apache.org
http://mail-archives.apache.org/mod_mbox/incubator-deltacloud-dev/,

• ‘deltacloud-users’: deltacloud-users@lists.fedorahosted.org
https://fedorahosted.org/mailman/listinfo/deltacloud-users,

• ‘deltacloud-devel’: deltacloud-devel@lists.fedorahosted.org
https://fedorahosted.org/mailman/listinfo/deltacloud-devel.

16

