
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

NÁSTROJ PRO DOTAZOVÁNÍ SSSD DATABÁZE
TOOL FOR QUERYING SSSD DATABASE

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE DAVID BAMBUŠEK
AUTHOR

VEDOUCÍ PRÁCE Doc. Dr. Ing. DUŠAN KOLÁŘ
SUPERVISOR

BRNO 2013

Abstrakt
Práce je zaměřena na databáze a konkrétně pak na databází SSSD. SSSD je služba, která
poskytuje jedno kompletní rozhraní pro přístup k různým vzdáleným poskytovatelům a
ověřovatelům identit spolu s možností informace z nich získané ukládat v lokální cache k
offline použití. Práce se zabývá jak databázemi obecně, tak pak hlavně LDAP a LDB,
které jsou použity v SSSD. Dále popsuje architekturu a samotnou funkci SSSD. Hlavním
cílem pak bylo vytvořit aplikaci, která bude administrátorům poskytovat možnost prohlížet
všechna data uložená v databázi SSSD.

Abstract
This thesis is focused on databases, concretely on SSSD database. SSSD is a set of daemons
providing an option to access various identity and authentication resources through one
simple application, that also offers offline caching. Thesis descrbes general information
about databases, but mainly focuses on LDAP and LDB, that are used in SSSD. In addition
also describes function and architecture of SSSD. Min goal of this thesis was to create a
tool, that will be able to query all the data stored in SSSD database.

Klíčová slova
Databáze, LDAP, LDB, SSSD, Red Hat, dotazovací nástroj

Keywords
Databases, LDAP, LDB, SSSD, Red Hat, querying tool

Citace
David Bambušek: Tool for querying SSSD database, bakalářská práce, Brno, FIT VUT
v Brně, 2013

Tool for querying SSSD database

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Doc.
Dr. Ing. Dušana Koláře

. .
David Bambušek

April 29, 2013

Poděkování
Velice rád bych poděkoval vedoucímu mé bakalářské práce Doc. Dr. Ing. Dušanovi
Kolářovi, který mi poskytl cenné pedagogické a věcné rady k vypracování mé práce. Stejně
velký dík patří odbornému konzultantovi Ing. Janu Zelenému, za všechny potřebné rady a
informace, které mi pomohly k úspěšnému vypracování mé práce. Na místě je také poděko-
vat firmě Red Hat, která mi umožnila vypracovávat práci pod její záštitou, stejně tak jako
všem jejím zaměstancům, hlavně pak Ing. Jakubu Hrozkovi, kteří se podíleli na revizi mého
kódu a poskytovali další věcné rady a doporučení.

c© David Bambušek, 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Introduction to databases 4
2.1 Relational database . 5

2.1.1 Overview and terminology . 5
2.1.2 Relational model . 5
2.1.3 Structure . 6
2.1.4 Constrains . 7

2.2 Tree databases . 8
2.2.1 XML databases . 8

2.3 Other databases . 9
2.3.1 NoSQL . 9
2.3.2 Object oriented databases . 12

3 Directory services 13
3.1 LDAP . 14

3.1.1 Name model . 14
3.1.2 Informational model . 15
3.1.3 Functional model . 16
3.1.4 Security model . 17
3.1.5 LDIF . 17
3.1.6 LDAP usage . 17
3.1.7 LDAP implemantations . 18

3.2 LDB . 18
3.2.1 TDB & DBM . 19

4 SSSD 20
4.1 User login in Linux . 20

4.1.1 Identification . 20
4.1.2 Authentication . 20
4.1.3 Problems using NSS and PAM . 20

4.2 Basic function . 21
4.3 Architecture . 21

4.3.1 Processes . 21
4.3.2 Communication . 22

1

5 SSSD Database 24
5.1 Users . 24
5.2 Groups . 25
5.3 Netgroups . 25
5.4 Services . 25
5.5 Autofsm maps . 26
5.6 Sudo rules . 26
5.7 SSH hosts . 27

6 Querying tool 28
6.1 Program specification . 28
6.2 Basic information and user interface . 28
6.3 Application architecture . 32

6.3.1 Inicialization . 32
6.3.2 Query on basic objects . 33
6.3.3 Domain and subdomain information 33
6.3.4 Printing results . 33
6.3.5 Errors . 34

6.4 Tests . 36

7 Conclusion 38

2

Chapter 1

Introduction

Humanity has gone through a lot of eras since its dawning 200,000 years ago. As time passed
by, we moved from stone age, passed bronze and iron age to get to modern age, sometimes
called the silicon age as to refer to enormous boom of computers. And indeed, today we live
in a world that could barely be functional without computers, no matter what you do and
where you go, you are surrounded by them. Human society has also been changing during
ages, from agricultural, passing industrial we got to stage where our society is knowledge-
based. Thanks to the Internet, society has become one global connected network of people
and the most important thing that makes people powerful is knowledge, in other words
information. Unfortunately people are not able to store all the information they know in
their own brains and therefore we are forced to use computers to help us with this task.
For purposes of storing huge quantities of information that we need, we created computer
databases.

Databases can store various types of data, reflecting real models from our world or can
store purely abstract data. To identify ourselves on the Internet or any other networks, we
use our virtual profiles, that store data about ourselves and about our membership in certain
groups or companies. This thesis describes a tool, that is able to query such a database of
users and additional information provided for managing virtual identity. Concretely it is a
SSSD database. SSSD is a set of daemons providing an option to access various identity
and authentication resources through one simple application, that also offers offline caching.

In chapter two, we will look generally on various existing types of databases and make
more detailed description of the most used one, that is relational database.

Chapter three is focused on directory services - LDAP and LDB, which is not directory
service by itself, but it is an abstract layer over lower key-value types of databases, offering
LDAP-like API. LDB is the database used in SSSD.

In chapter four we will take a closer look on SSSD itself, we will introduce basic purpose,
function and architecture and in chapter five a complete description of a SSSD database
will follow.

The sixth chapter describes the tool for querying SSSD databases, there we will find a
complete architecture of this application, its UI and examples of usage.

Conclusion and development will be stated in the last seventh chapter.

3

Chapter 2

Introduction to databases

[1] [5] Term database can be understood as a set or collection of data, that is somehow
organized. It is typical, that a database reflects a real existing concept, system, structure or
information, under which we can imagine for example cities and their populations, company
employees or items in a store. We can work with this database and store, change, delete or
query information stored in it.

To work with a database, we use a database management system (DBMS), what is a
software allowing us to run all mentioned operations and to administrate the database.
Most known and widely used DBMS are for sure MySQL, SQLITE, Microsoft Access or
PostgreSQL.

When speaking about database, we usually understand this term as both data and their
structure so as database management system, but formally

”
database“ is just data wired

to its data structures.
We can divide function of DBMS into four groups:

1. Data control - maintaining integrity, taking care of security, monitoring, dealing with
permissions to work with a database (creating and managing users)

2. Data definition - creating/modifying/removing data structures to/from a database

3. Data maintenance - inserting/updating/deleting data from a database

4. Data retrieval - data mining done by users to work with received information or to
proceed it for other purposes by querying and analyzing

Each database with its DBMS works and looks accordingly to its database model. We will
get back to each type in next subsections, for now to mention them, they are historically
divided to three major groups - navigational, relational and post relational databases.

During first era in 1960’s, there were two main representants of navigational model
- hierarchical model developed at IBM and the Codastl(Network) model. Navigation in
Codastyl was based on linked data creating huge network. It was possible to search for
entries using their primary key (CALC key), by using relationships from one entry to
another or by going through all entries sequentially. IBM’s DBMS IMS was quite similar
to Codastl, but instead of network model it used stricter hierarchical model.

In 1970’s the world first encountered relational DBMS, which was introduced by Edgar
Codd from IBM, more detailed description will be offered in next section. Main difference
is that a database is formed from tables, each used for different entity. Main idea in terms
of how to search for entries is that we should search data by content and not by following

4

links as it was with navigational databases. Relational databases became the most used
types of databases and have persisted on that spot until now and the dominant language
used to work with them is SQL.

So far last era of databases, called post-relational and also known as NoSQL databases,
showed up at the dawn of new millennium. These databases are document-oriented and
offer quick key-value storage. They are mostly used in situations when we store large
quantity of information and where the relationship between them is not that important.
These databases found their place at social networks like Facebook or Twitter to store
comments, tweets and other mass quantity information.

Languages used for communication with databases have each its own specific function:

• Data definition languages - define data types and their relationships

• Data manipulation languages - used for inserting/updating/deleting data

• Query languages - used for searching for data

Each database model has its own language. Most know and used languages are, already
mentioned, SQL, then OQL used in object model databases or XQuery used with XML
databases.

2.1 Relational database

2.1.1 Overview and terminology

A relational database is a set of data entries, that are organized as a collection of tables.
Relational database is created upon a basis of relational model and a software to operate this
database is called a relational database management system (RDBMS). It is nowadays the
most used type of database, that can satisfy needs for solutions of most common problems
and can be applied on most models that can be found in our world. The most simplified
view on relational database is that it consists of tables, that are composed of rows, where
each field represents one of attributes.

Relational database theory is a mathematical theory and it has its own terminology,
these terms are slightly different from those terms, that we use when talking about SQL,
which is the main language operating with relational databases. Table 2.1 shows the dif-
ferences.

mathematical theory SQL

relation, base relvar table
tuple row
attribute column name
attribute value column data
derived relvar query result

Table 2.1: mathematical vs. SQL terminology

2.1.2 Relational model

The basic idea of relational model is that all data is mathematically represented as n-ary
relations, which are subsets of a cartesian product of n domains. The view on data in

5

this mathematical model is done by two-valued predicate logic, where each proposition can
be either true or false (later there were attempts to change this to three or four valued
predicate logic by adding unknown value and then valid an invalid unknown). Data are
handled due to rules of relational algebra or a relational calculus.

Each relational database has constraints, which lead its designer to create a consistent
representation of some information model. The process of creating consistent database is
called normalization, which leads to selection of most suitable logically equivalent alterna-
tive of the database.

Basic building stone of a relational database is domain, usually referred as type. Tuple,
that is ordered set of attributes. Attribute consists of attribute name and data type name.
Every relation is composed from a heading and a body. Heading is a collection of attributes
and body is the rest, meaning a set of n-tuples. Relation, which is visualized as a table,
consists of a set of n-tuples, tuple is then similar to a row. Relvar is a specific relation type
variable, and at every moment some relation of that type is assigned to it, even though the
relation has none tuple.

This model was introduced to world by E.F.Codd, who worked in IBM’s San Jose
Research Laboratory in 1970’s. Later other people as Chris Date and Hugh Darwen with
their teams were the ones who developed and maintained relational model. Codd made
his

”
12 rules“ (in fact 13, because they are numbered from zero to 12) to define what a

database management system must fulfill in order to be accepted as relational. But in fact,
none of used RDBMS nowadays comply to all 13 rules, the only example which does is
Dataphor.

2.1.3 Structure

As was already said, when speaking about structure of a relational database, we use term
table to visualize basic stone of database. It is mathematically incorrect term, in theory
we use term relation. Now we will go through other basic terms of relational database,
which will be shown on an example. Lets say we want to make a database of city citizens,
where we want to know their name, surname, address and date of birth, further we assume,
that each person has unique birth number. Each of these characteristics is called attribute.
Each attribute can get one of different values (for address it would be one of city’s streets).
Complete set of these values that attribute can have is called a domain. Information that
characterizes one of citizens, puts in relation different values of attributes from various
domains. Such a group of attributes belonging together is called a n-tuple. Here is a
complete mathematical definition of what has just been explained.

Given a collection of sets D1,D2,. . .,Dn (not necessarily distinct), R is a relation on
these n sets if it is a set of orderes n-tuples <d1,d2,. . .,dn >such that d1 belongs to D1, d2
belongs to D2,. . ., dn belongs to Dn. Sets D1,D2,. . .,Dn are the domains of R, The value n
is degree of R. [1]

In writen text we write simply R(A1, A2,. . .,An) if we want to describe a relation R
with attributes A1. . .An. We can deduce few consequent rules from the definition, which
are that because the relation’s body is set on n-tuples, it is not ordered, from the same
reason there are no duplicate n-tuples, and second, that some of attributes can be defined
on the same domain, but names of attributes must be unique.

6

Figure 2.1: Relational database [14]

2.1.4 Constrains

Each database usually contains more than one table and information in these tables can
relate to each other. For example we already have table of our citizens and now we also
have table with city houses. Each house has different size, different status and different
owner. And here we get to a relation between our two tables - house owner is always a
citizen. So there is relationship

”
owns“ between those tables. In relational database this

relation is purely logical, not physical (pointers) as before in pre-relational, and it is created
upon equality of values in certain rows of both tables. In the example it will be owner and
name. To make it possible to create such relations, we need to make sure that each row
will have unique way how to identify it and then there must exist a link to this identifier
in second table. In relational databases this is achieved by using keys. For identification
it is a primary key and for links it is a foreign key. Data in every database is always
somehow constrained. There are two types of constrains, general and specific. General
constrains depend on usage of database and data is constrained in way of data type or
minimum/maximum possible value. On the other hand, general constrains are the same
for every database and they have effect on key attributes.

Candidate and primary key

Primary key is used to identify each row of a table, therefore it must be unique. We usually
use logins, birth numbers or just integers as ids for primary keys. Sometimes there can
be more candidates for primary key, so we have to chose on of these candidate keys to be
primary. Attribute CK of relation R is called a candidate key if applies to these rules:

• Values of attribute CK in relation R are unique - there are no two n-tuples in relation
with the value of this attribute.

• Attribute CK is specific and minimal - it is not composed of more other attributes
and can not be divided into simpler

These rules must be valid in any time given. Primary key is then one of candidate keys, the
rest of them are called alternative keys or secondary keys. We usually chose the simplest
candidate key to become primary. Primary keys are used in other tables as links to its
table, therefor not only that it has to be unique, but it also can not be unset or unknown,
in terms of SQL we call such a value NULL, so primary key can never be NULL.

7

Foreign key

Attribute FK of relation R is called foreign key, if applies to these rules:

• Each value of FK is fully inserted or fully not inserted

• There is relation R2 with candidate key CK, that any value of FK equals to some of
values from CK of n-tuple from that relation.

Again we can draw some conclusions. We see that foreign keys do not have to have a
value, that might be case where for example some house is not owned by anybody, so the
attribute owner will be empty. It is important that every foreign key really leads to some
candidate key in other table, because that is the thing keeping database consistent and it
is responsibility of administrator/programmer to secure it.

2.2 Tree databases

These databases, also knows as hierarchical, are databases, which were mainly used at the
beginning of computer era, before times when the relational model became most common
standard. As the name suggest, data in this model is stored in tree structures. From
different point of view a tree allows us to store data in child-parent structure, which is
referred also as 1-n structure, because each entry can have only one parent, whereas a
parent can have multiple or no children. In this type of database, entries are connected by
these parent-child relations, which are in fact simple pointers.

To look at hierarchical database in the same way as at relational one, table would be
entity type, row a record and at last, column would be an attribute. These databases are
not much used nowadays and if, then just for special models like geographic informational
systems or file system data. Most used implementations of hierarchical databases in the
present are Windows Registry developed by Microsoft and IBM’s IMS.

2.2.1 XML databases

[11] XML database is another type of database model, this one is specific by storing data
in XML format. This data can be queried as in other models, but can be also exported and
serialized into other formats. We divide XML databases into three major groups:

• Native XML Database (NXD) - the basic unit of this database is an XML document;
it does not require any underlying physical model as it can stand on a relational, OO
database or any other kind of database or even just on indexed or compressed files;
it defines XML document logical model, that at least must have elements, attributes,
document order and PCDATA.

• XML Enabled Database (XEDB) - this kind of database has also a XML mapping
layer, that manages the retrieval and storage of XML data. Mapped data is stored
in a specific format, so the original XML meta-data can be lost. To manipulate this
data we can use either special XML technologies as DOM, XPath etc. or SQL.

• Hybrid XML Database (HXD) - This kind of database can be treated as both NXD
or XEDB, it is just on application which way it will prefer. Implementation of HXD
is for example Ozone.

8

XML databases find their place with informational portals, product catalogues, business to
business document exchange and many others. When applying XML databases for these
solutions, they offer far bigger performance then relational databases and they are more
convenient and easier to use, manage and expand.

XML

XML stands for Extensible Markup Language, which is nowadays format, that many appli-
cations use for encoding their documents. It was created to be both human-readable and
machine-readable. Fundamental unit of XML document is an element, which is created
using tags, a text construction that begins with

”
<“ and end with

”
>“, for example:

<person>bambusekd</person>

would be element representing a person bambusekd. Each element can have attributes,
those can be either created inside beginning tag or as a separate couple of tags.

<person age="21" position="student">bambusekd </person>

or

<person>

<name>bambusekd</name>

<age>21</age>

<position>student</position>

</person>

both examples provide same information.
XML was designed to be simple and to have wide scale of usability on the Internet. It is

data format base on Unicode, so it can serve in any of world’s languages. No matter the fact
XML was designed for documents it found place also in many web services as representation
of arbitrary data structures. XML is used in all major office tool applications as Microsoft
office, OpenOffice, LibreOffice etc. XML has also been father to many other formats, that
use XML syntax as XHTML, RSS and others.

2.3 Other databases

2.3.1 NoSQL

[9] Term NoSQL was first used in 1998 by Carlo Strozzi, who described his lightweight
relational database as NoSQL because it did not follow design, structure and rules of typical
SQL database. From then, you could not hear much about NoSQL, until a boom of social
networks and a need for storaging huge amount of simple data came in 2009. In this year
a guy from Last.fm made a statement, that NoSQL databases are those, that do not care
about atomicity and consistency as traditional relational databases.

Main goal of NoSQL database is to provide lighter database, that would be faster and
with higher availability, this is achieved by a model with looser consistency. That allows
faster horizontal scaling. These databases consist of key-value entries, where relation-
ships between them are not that necessary. NoSQL is focused mainly on adding data to

9

database and retrieving them, not more. This with omission of relations allows these kind
of databases to be used just for certain types of models. Such models can be millions of
posts on social network like Facebook or Twitter, where there is no need of relations in
between data, we just need to store them and retrieve them.

Term NoSQL does not mean that these databases are not SQL databases, because in
fact some of them allow SQL-like queries above them, it rather means

”
not only SQL“.

Work on language, that would be specifically made to query NoSQL database has began
in 2011. This language is called UnSQL (Unstructured Query Language) and it can query
collections of documents, what in relational model would be tables and rows. Unfortunately
UnSQL is not capable as SQL in manners of data definition, so there is no parallel query
to SQL’s CREATE TABLE/. . . in it.

Document store databases

Basic building stones of these databases, as name already says, is a document. As in
relation model there are tables, here there are documents. Each implementation treats
term document differently, but all of them encode data using one of formats as is JSON,
XML, YAML or PDF. In comparison to relational model, records here do not have to follow
strict scheme of data structure, that means that one type of entry can have on different
occasions different sets of attributes. This allows to add any new information at any time
without any problems with predefined data structure.

To address a document we use an unique identifier, that can be either name or URI.
Usually these values are hashed to indexes, so data retrieval of any document if very fast.
Basic query needed with this database is to retrieve document base on its identifier, however
some implementations allow us to retrieve documents based on their content, but this
depends on each implementation.

JSON - JavaScript Object Notation is a standard made to represent data structures and
associative arrays. Although it is derived from JavaScript, which a scripting language used
mainly in web environment, it is language-independent. JSON standard can be found in
RFC 4627, it was first introduced in 2001 by Douglas Crockford and it is nowadays very
popular serialization format used in server-client communication next to XML and others.
It contains just few basis data types: number, string, boolean, array, object and null. The
format was created in human readable form. Compared to XML it has lesser demands on
data processing. Example of a person data encoded in JSON looks like this:

{

"firstName":"David",

"lastName":"Bambusek",

"job": {

"occupation":"student",

"year":"3"

},

"age":"21"

}

YAML - is a recursive acronym for
”
YAML Ain’t Markup Language“, previously

”
Yet

another Markup Language“. It was brought on the light of the computer world in 2001 by

10

Clark Evans and it is another data serialization format, that is based on combined basis
of programming languages as Python, Perl or C, XML and format of electronic mail. It is
again representant of human-readable formats as was JSON or XML. YAML’s main goal is
to offer a way how to map high-level languages data types as are lists, scalars or associative
arrays, to be easily modified, or viewed, so the ouput could be used for configuration files
or document headers. Thanks to its syntax with whitespace delimeters it is very easy to
work with YAML using grep or some of scripting languages as Perl. Same example used in
JSON paragraph would look this way in YAML:

first_name: David

surname: Bambusek

job:

occupation: student

year: 3

age: 21

Graph databases

[8] Graph databases have completely different structure than relational databases. They
consist of nodes/vertexes, edges/relationships and properties/attributes. Graph database
is index-free, this is due to fact that every entry has a direct pointer to his neighbouring
element, so no lookups are needed. So as relational databases are based on mathematical
theory of relations, graph databases are build upon a graph theory. Graph theory is useful
in many ways, graph algorithms are used to find shortest paths, measure statistics like
PageRank, closeness and it also offers a basis for high-performance databases.

Figure 2.2: Graph database [13]

In graphs nodes represent entries, that means people, companies etc. Properties is
some kind of information, that describes, details or specifies a node. If there is node David
Bambusek, then one of properties could be

”
student“. Then we have last item of graph

11

- edge, which connects nodes with other nodes or nodes with properties, so in fact they
represent the relationship between the two items they connect. These edges are the most
important thing in graph model and carry the biggest amount of information. The way
how to get some worthwhile information is to examine connections and properties of nodes
we are interested in or of those we are led to on a way from starting nodes. In comparison
to relational databases, graph databases are faster with smaller amounts of data as they
do not need to perform join operations. It is better to use them in case, where it is known
the database will change, grow and in some kind evolve, meaning we will add new kinds
of nodes or add new information to existing ones. On the other hand, when we compare
performance of relational and graph database on the same set of large data, relational wins.

2.3.2 Object oriented databases

[15] Object oriented databases differ from all other types of databases in their attitude
of storing data. In other databases, data is stored using basic data types as integers and
strings. In object oriented approach to databases data is stored in objects. Same thinking
is used in OOP languages as C++ or Java. Objects were made so we could better reflect
real world objects. Each object is compound of two basic parts. First is set of attributes,
attribute is a characteristic of object, attribute can be either simple data type as integer or
it can be again object. Second part is collection of methods, these define object behavior.
All together object contains data and also executable code. Creation of new object is
called instantiation. In this model, there exist so called classes, which are in fact templates
for objects, they define their attributes and methods, but they do not contain data by
themselves. To identify objects an OID in used in this model, which is unique ID of each
object.

There are few fundamentals of object oriented approach, that are valid also in databases.
First thing is that objects communicate in between themselves using messages, depending
on received message object does something that is defined by its behavior. Next thing is
encapsulation, that means that inner implementation of object is not visible from outside
world, we can only see the interface. Therefore object itself or rather object data can be
changed just by its own methods. This is so that there is no possible way how to make
incorrect change to data stored in object. Also inheritance is very important, in fact it is
one of the most useful features of OOP attitude. It is a way how to make relationships
between objects and how to add some more specifications to new objects based on already
created ones.

We should use object databases in cases when we have very complex data with a lot
of many-to-many relationships. There is no sense in using them for small databases with
simple relationships. Object database advantages over relational are that thanks to inher-
itance, we do not need that much code, the data model reflects the real world by using
objects, navigation is much easier, there is reduced paging and finally it works very well
with distributed architectures. On the other hand, relational model with tables is simpler,
it is more efficient with simple data and there is generally bigger support, more software
and more standards for relational databases, it is likely to say that object oriented approach
is still bit wilder then more stable and standardized relational.

12

Chapter 3

Directory services

[6] [7] Directory services allow us to access data of directory type. By term directory we
mean specialized database of telephone numbers, names, email addresses and others. These
databases have their ancestors in printed directories of telephone numbers used by millions
people around the globe. When computers came on scene during 1980’s, also new network
services using the Internet to create global telephone number directory showed up. These
directories were base on ITU-T X.500 standards and later in 1990’s, new standard was
introduced, it was IETF Lightweight Directory Access Protocol (LDAP), which completely
replaced X.500.

LDAP architecture, which is based upon X.500 architecture was created in 1997 and
has had many actualizations. Today the most actual recommendations for LDAP are RFC
4510 and RFC 4511. Main goal for LDAP was to create a distributed directory service,
that would treat all user equally and that would be easily extended. Basically for the same
reason X.500 was created, but due too difficulty of implementation was never so successful
as LDAP.

Architecture

X.500 defines directory as
”
a set of opened systems, cooperating in intention of preserving

logical database of information containing set of object from the real world“ [6]. The
architecture of database is hierarchical and is called Directory Information Base (DIB). It
consists of entries, where each of them has set of information about itself, called attributes.
Each attribute has a data type and a value. Each entry corresponds to some class of object
and according to that class has different attributes, in other words object class defines
structure of each entry.

We can imagine DIB as a tree, that is organized from top to bottom, where the most
top entry represents the most generalized entry, for example country, going down the tree,
we meet regions, then companies and so on. Each entry needs to be identified somehow,
for this we use distinguished name (DN). It always consists of DN of its superior entry DN
and its own DN.

Main difference between directory and relational database is in what we expect from
them. Directories usually hold stable data, that are supposed to be read many times, rather
then modified. We usually work with just one entry, so there is no need for operations like
join or complicated search functions over more than one entry. Directory can contain
duplicated data if it helps the performance of it. Most applications that use directories
expect quick response from them.

13

Data stored in DIT can be physically stored on one server or can be distributed on more
servers, it is wise to store them on more servers in case that we want to avoid overload of
one server due to too many requests, we can also make a replication of some part of DIT,
so request on this part can be divided onto more servers.

X.500 directory

This standard is ancestor and template for all later created directory services. It was
created in 1988 and it is environmentally and architecturally independent. Its concept is
quite similar to DNS, where it consists of entries representing all countries of the world.
X.500 uses many protocols:

• Directory Access Protocol (DAP) - to access database of directory service

• Directory System Protocol (DSP) - to exchange information

• Directory Information Shadowing Protocol (DISP) - for data sharing between servers

But X.500 was too difficult to implement, therefore a lightweight version called LDAP was
created. It is much faster, efective and uses just one protocol called also LDAP.

3.1 LDAP

[12] Lightweight Directory Acces Protocol (LDAP) represents not only internet protocol
for directory access, but entire directory service. LDAP is based on ITU-T X.500 standard
and is described by four so called models. Each of them describes one different view on the
directory service:

• Name model - describes directory structure made of entries, that are identified by
distinguished names (DN).

• Informational model - describes information which all together form so called directory
scheme, those are data types, operations that can be done upon them and information
how to store them. It also describes entries, attributes and their possible values.

• Functional model - describes operation done by LDAP protocol, where the most used
operation is search and this model specifies where to search, using what keys and so
on.

• Security model - describes how data is secured in database, that means if there is
some authentication, encryption and access rights.

3.1.1 Name model

Name model describes organization of data and relationships between them. Name model
describes how entries are stored into tree structure called Directory Information Tree (DIT).
In this tree, each peak of the tree is entry, that can have ancestor/parent and descen-
dant/child, to which they are connected by an edge. The structure of the tree corresponds
to company structure, geographical structure or any other hierarchical structure, that usu-
ally reflects some real existing model. At the most top, there is a special root entry. To
identify an entry we use distinguished name (DN), which is made from of all DNs of entry’s
parents. There is also special type of entry called alias, which refers to some other entry.

14

3.1.2 Informational model

Informational model defines entries, which as we already know are basic stones of DIT.
Each entry contains information about itself, this information is stored using attributes,
entry can have more attributes. Each attribute has a data type and a value, that can be
either compounded value or just a simple value.

Lets make an example of Red Hat employee David Bambusek, entry will have an at-
tribute cn, that goes for common name and mail, that logically stands for e-mail address,
so in the directory there would be entry:

dn: cn=David Bambusek, dn=redhat, dn=com

cn: David Bambusek

mail: xbambu02 [at] stud.fit.vutbr.cz

Each entry belongs to a certain type of object class, these classes can be edited and
created by database administrator.

”
Object class is a set of objects, that share the same

characteristic.“[7]. Basic properties of class are that it defines which attributes entry derived
from that class must and may have, defines which objects and entries belong to them, takes
care about placement in DIT and checks operations being done over entries. As it is common
in OOP attitude, classes can inherit some features of their parents. In LDAP we have 3
main types of classes:

• Abstract class- no entry can be based on this class, they only serve as templates for
other classes.

• Structural class - each entry must be made based on at least one of these classes,
every structural class is based (directly or indirectly) on the highest abstract class
top.

• Auxiliary class - is used to extend attributes of entries.

Formal definition of class according to ABNF looks like this:

ObjectClassDescription = LPAREN WSP

numericoid ; object identifier

[SP "NAME" SP qdescrs] ; short names (descriptors)

[SP "DESC" SP qdstring] ; description

[SP "OBSOLETE"] ; not active

[SP "SUP" SP oids] ; superior object classes

[SP kind] ; kind of class

[SP "MUST" SP oids] ; attribute types

[SP "MAY" SP oids] ; attribute types

extensions WSP RPAREN

kind = "ABSTRACT" / "STRUCTURAL" / "AUXILIARY"

The only must parameter as we see is OID - which is identificator. Object class of our
RedHat employee from example would look like this:

(2.5.6.6 NAME ’employee’

SUP top

STRUCTURAL

MUST (cn \$ mail)

MAY (departement \$ telephone))

15

That means there must be always employee’s full name and mail given and we can op-
tionally add department where he works and his telephone. We have two different types
of attributes, they can be either user attributes, which are already presented cn, mail and
others, these can be changed or modified, then there are operational attributes, that are
generated automatically, are permanent and are used for administration, for example in-
formation of who created entry and when. Each attribute is identified by unique Object
Identifier (OID). Basic types of classes and attributes can be found in RFC 4519.

3.1.3 Functional model

Functional model describes operations that can be done upon a directory, that means
adding, modifying, deleting entries and querying them. Not only that it describes these
operations, but it also defines way and scale of a query/search operation. If we have a big
directory, it can be very useful to limit our query just on some part of directory. LDAP
defines three types of search.

• base - search is done just in set base object

• one-level - search is done just in direct child of base object

• subtree - search is done in whole subtree of base object, with that object included

For a search operation we can use different filters and comparing rules. Not all data types
support all kinds of comparing. For example operations like greater than/less than can be
used only on attributes that can be ordered alphabetically/numerically/. . . Basic filtering
rules are mentioned in a table 3.1.

Rule Format

equality (attr=value)
substring (attr=[leading]*[any]*[trailing])
approximate (attr =value)
greater than (attr¿=value)
less than (attr¡=value)
presence (attr=*)
AND (& (rule1)(rule2))
OR (—(rule1)(rule2))
NOT (!(rule1)(rule2))

Table 3.1: filtering rules for LDAP

There are few basic operations in LDAP that should be mentioned.

• Bind - is used to establish a connection between server and client, to agree on type
of authentization and to login into directory

• Unbind - is used to end the connection

• Search - basic search operation, you must define the base object of search, the scope,
the filtering rule, list of attributes we are interested in and maximal number of results
we want to get

• Compare - is used to compare attribute values of set entries

16

• Modify - is used to change defined entry

• Add - is used to create new entry

• Delete - is used to delete an entry

• Abandon - cancels previous operation

3.1.4 Security model

Security model provides protection to data in directory against non authorized access. All
LDAP servers have SASL autentization implemented. We can divide LDAP servers into
three categories:

• public servers with read-only data with anonymous acces

• server supporting password autentization, MD5 SASL implementation is needed

• server supporting cryptation and authentization, they must implement TLS opera-
tions and authentization with public keys

3.1.5 LDIF

The LDAP Data Interchange Format (LDIF) is a standard, described in RFC 2849, that
defines a plain text format for representing data stored in LDAP directories and LDAP
operations like add, modify. . .From LDIF point of view, LDAP directory is a set of entries,
where each of them has its own record.

Its birthplace was University of Michigan, where it was created by Tim Howes, Mark C.
Smith and Gordon Good. LDIF has been extended and updated few times creating current
standard specified in RFC 2849. We have already mentioned an example of LDAP entry, so
here we have a modifying request on an entry, that adds e-mail address to an existing entry:

dn: cn=David Bambusek, dn=redhat, dn=com

changetype: modify

add: mail\newline

mail: xbambu02 [at] stud.fit.vutbr.cz

3.1.6 LDAP usage

As we said, directories are computer version of old telephone directories, so they most
usually consist of information about people/organization/services, so the main usage is to
get some contact information.

This is used for example with e-mail clients. When writing email, you insert name of
recipient, mail client will ask LDAP server for his email address and that server will answer
by exact address or in case there are more people with same name with all their addresses.

Quite similar situation is when using VoIP communication, each VoIP telephone has
LDAP client, that can ask a LDAP server for a telephone number of a given person. Next
example of LDAP usage is verification of users trying to access some services, most usually
web service. Web client will ask user for login and password, send it to server, which will
try to bind to LDAP server, which contains approved user logins and passwords, with this
data and in case bind is successful, user is authorized. This approach is also used in Unix,
where instead to authentize using /etc/passwd LDAP server is used.

17

3.1.7 LDAP implemantations

There are many implementations of LDAP servers, some of them are open source, some of
them are commercial. Here is a list of the most known of them:

• 389 Directory server (Fedora Direcory Server) -it was developed by Red Hat. The
name comes from the port number for LDAP, which is 389. This implementation is
built in Fedora and is supported by many other distributions like Debian or Solaris.

• Active Directory - is a Microsoft implementation of a directory service, it was created
in 1999 as part of Windows NT Server, it not only uses LDAP, but also Kerberos and
DNS.

• Apache Directory - is an implementation of directory service entirely written in Java,
it is an open source project created by Apache Software Foundation

• FreeIPA - is in fact combination of already existing projects, that provides managed
Identity, Policy and Audit (IPA), it is focused on Unix computer networks. It uses
Kerberos 5 for authentication Apache and Python for Web UI and 389 Directory
server for LDAP. There is possibility to cooperate with Microsoft’s Active Directory
using Samba.

3.2 LDB

[10] LDB is a LDAP-like embedded database used in Samba project. Although it provides
LDAP-like API, it is not LDAP standard compliant, its highest priority is to be compliant
to Active Directory. LDB can be seen as a solution providing something between key-
value pair database and an LDAP database. LDB is basically a module above TDB that
manipulates key-value data into LDAP-like structure.

LDB is a transactional, that means it checks if any error occurred during changing the
database data before committing it and if so, all the changes are backed, so the databasa
is in the same state as before intended change. It is also modular, that allows any new
functionality to be added or removed according to our needs on database performance.
Available backends uses TDB, LDAP or SQLITE3.

LDB has many advantages of LDAP like custom indexes, it offers powerful search op-
tions, it is hierarchical and its structures can be easily modified or extended. On the other
hand it keeps also some advantages of TDB as is fast search, all the data is stored in one
file and it is easy to backup.

LDB enables fast searches thanks to function, that takes care of building indexes for it,
when a new index is added, whole database is scanned so the indexes can be automatically
rebuilt. Also there is no need for a schema, since any object can store arbitrary attribute-
value pairs.

LDB has many powerful tools. In between them is worth mentioning ldbsearch and
ldbmodify.

ldbsearch - its syntax is very similar to ldapsearch in LDAP, by using -H option, you
define backend which should be used (tdb,sql, ldap,. . .) and then as in ldapsearch comes
definition of the search scope, ehw base dn and a LDAP-like search expression.

18

ldbmodify - is a tool using known LDIF format, it allows you to explore and change a
snapshot of the directory in a text editor, you can use filters to show just object you want
to see, it can be also used to backup and restore database and it works against an LDAP
server too.

3.2.1 TDB & DBM

As was already mentioned LDB is somewhere between TBD and LDAP. TDB is a successor
of DBM database, made by Samba team. Its main difference from DBM is that it allows
multiple writers to use database simultaneously and uses internal locking to avoid one entry
to be rewritten by one user, while another one is working with it. DBM is a very simple
database allowing to store any data in simple key-value structure. It was designed by Ken
Thompson from AT&T in 1979. Each key is hashed to allow fast data retrieval. DBM uses
fixed-sized buckets for primary keys, that split as database grows. Hash is usually directly
connected to physical disk, so the retrieval can be very fast, because there is no need for
any connecting or difficult querying.

19

Chapter 4

SSSD

[3] [2]

4.1 User login in Linux

In order to work with a Linux system, one must first log in. No matter if there is some
GUI available or you log in using command line, you always have to enter your name
and password. Term password covers not only ordinary text password, but it can be also
fingerprint or any other device similar to it. Logging in has two phases. As first system
needs to get information about user such as what his home folder is and as second, it is
neccesary to authorize the user.

4.1.1 Identification

Information about users or for example hosts can be usually found in various files like
etc/passwd or etc/hosts. Problem is that they are not on the same place, therefore some
API is needed to work with all of them. In Linux, there is NSS(Name service switch) that
serves this purpose. It is part of a standard C library, so it can be run on any system. It is
a modular feature, where each module works with one source managing one type of object.
For example one module will work with user from LDAP and second with passwords from
etc/passwd. NSS is configurated using its config file in etc/nsswitch.conf.

4.1.2 Authentication

For authentication there is another API called PAM(Pluggable authentication module). It
provides four main features - account, auth, seesion and password, where auth is the most
important for us, because it tells us whether user can authenticate. PAM has also many
modules, some of them are even based on anothers and complete programming is quite
complicated. Most used modules are those providing connection to etc/shadow, LDAP,
Kerberos, some additional modules offer advanced functionality as password quality checks.

4.1.3 Problems using NSS and PAM

Using NSS and PAM is possible for loggng into some system and this solution is working
quite well, but there are few problems connected with it. For example when a situation of
identity overlap occurs, when we have two domains with the same user, we have to somehow

20

decide who is who and how he will be identified. Second big problem is how to query a
remote server if a computer is currently offline. There are some options to solve this - a
replica of LDAP tree can be made locally, information can be saved into etc/passwd or
whole directory can be stored in cache, but all of these solutions are unhandy. Also with
usage of NSS and PAM comes a lot of work with configurations for administrators, that
are usually not very happy when given such a big amount of work.

4.2 Basic function

SSSD was created to solve all the problems mentioned above. Main idea of SSSD is to
provide enhancements to Fedora or any other Linux distribution, that supports SSSD.
First thing that SSSD offers is offline caching for network credentials. This is a big ease
if you use a centrally managed laptops, because all the services as LDAP, NIS or FreeIPA
will in fact work also offline. So what SSSD in fact does is that it provides access to SSSD
cache for local services, cache stores information about identities from various providers as
LDAP, Active Directory or Identity Management domain. SSSD used to be a client side
part of freeIPA, but lately became separate project.

Next feature of SSSD is fact, that it reduces the overhead of opening new sockets for
each query on LDAP, by using just one persistent connection to one or more LDAP/NIS
servers, each acting as separate namespace. The only service that communicates with
LDAP is SSSD Data Provider and that reduces the load on LDAP server to one connection
per client. SSSD can be connected to various domains-sources of identities, where each of
them can be connected with more servers, so when one of them is down, next server on list
will be used.

Additional inovation, that SSSD brings is a service called InfoPipe, that works on D-
BUS system. This service contains extended data information as preffered language or your
profile image, which until now was mainly concern of various configuration files in user’s
home directory, which is not always available, due to mounting of home directory has not
yet been done.

In summary, the benefits of SSSD are that laptop users can use their network logons
even when they are offline, with SSSD you only need to manage one account. Just one
service is needed to work with multiple identity and authentication providers. Developers
will have access to InfoPipe, what brings new approach for extended user information,
other services as FreeIPA, LDAP or NIS can take advantage of offline features thanks to
the caching and the last, that it will provide FreeIPA client side software, for entering into
FreeIPA domains. And the whole configuration of SSSD is matter of few lines compared to
NSS and PAM together, so it is very easy to use for administrators.

4.3 Architecture

4.3.1 Processes

The SSSD is a set of four main processes, each of them has its own special function:

1. the monitor -is the process, which checks if other processes are running, it spawns
them on the start and then re-spawns them if one of the periodical check shows that
any service is not working.

21

Figure 4.1: SSSD architecture [4]

2. a data provider - this process is responsible for communicating with various backends
and populates cache with data obtained from them. For each remote server, there is
one data provider process.

3. responders - are processes, that communicate with system libraries as NSS or PAM
and try to give them data, that they are asking for, from cache. In case that data
in cache is expired or is not there at all, it gives a signal to data provider to obtain
it. When data is obtained, it is stored in cache, responder is informed about it, so it
again goes into cache and gets the needed data.

4. helper process - there are some operations, that could be blocking, therefore SSSD
performs them in special sub-processes, that are forked from the Data Provider.

4.3.2 Communication

D-Bus

For communication in between processes the D-Bus protocol is used in SSSD. Commu-
nication is done in form of sending messages. D-Bus can be divided into four primary
components:

1. The D-Bus Server - is used for establishing connections. It can be identified by its
address, that consists of a transport name, colon and an optional list of keys and
values separated by commas.

2. The D-Bus Connection - these connections are peer-to-peer connections, so one end
listens for method calls, and the other one of them initiates methods and vice versa.

3. The D-Bus Message - There are two types of messages:

• one way messages - these are D-Bus Signals and D-Bus Errors, they usually carry
a simple message from one end of connection to the other one. These are most
often signals to stop/start service or to notify that some error has occurred.

22

• answer messages - these are D-Bus Methods, their functions is to run a method
on a remote process as it would be run locally, after calling the method, there
can, but not necessarily has to, be an answer to it that goes back to end that
called the method.

4. The D-Bus System Bus - is not used in SSSD, but it is part of D-Bus protocol. It
was designed by the Freedesktop project and was created to handle multiple commu-
nication between system daemons.

S-Bus

To ensure that SSSD will have good performance, it works completely in non-blocking way
with help of the tevent event loop library developed as part of the Samba project. To
provide certain level of abstraction and in order to make possible to integrate D-Bus with
the tevent, SSSD uses S-Bus - a wrapper created around D-Bus library.

Two processes in SSSD work as S-Bus servers, which is an abstraction of D-Bus server,
they are identified by an UNIX socket, mentioned in the heading text, and they are:

• The monitor - it can call methods as
”
ping“ to check processes as was described above

or
”
rotateLogs“ to rotate logs by force and others. Socket - /var/lib/sss/pipes/private/sbus-

monitor

• The Data Provider - it calls different methods depending on the data type that
is requested, for example the NSS can call method

”
getAccountInfo“. Socket -

/var/lib/sss/pipes/private/sbus-dp $ domain name

23

Chapter 5

SSSD Database

SSSD database stores few different kinds of objects. There are 7 of them in total and in
this chapter we will briefly introduce each of them. As was previously said, each object is
an instance of a class that defines object’s attributes. Attributes of objects like users and
groups are very similar to those typically used in LDAP, so we can find a lot of similarity
here. Complete list of attributes for these objects of LDAP character can be found in
ldap opts.h1.

5.1 Users

User objects store basic information about users, so in fact a user object is a virtual identity
of a real person. Every user can be member of multiple groups or netgroups.

objectClass=user

attribute description

uid user name
userPassword user password
uidNumber UID
gidNumber GID
homeDirectory home directory
loginShell user shell
gecos full name

Table 5.1: User attributes

1src/providers/ldap/ldap opts.h

24

5.2 Groups

Users can be members of groups, groups can also belong into groups, so multiple nesting is
possible. There is a tool sss groupshow that can be used to display group members.

objectClass=group

attribute description

cn group name
userPassword group password
gidNumber GID number

Table 5.2: Group attributes

5.3 Netgroups

Netgroups are slightly different from groups, there are network-wide groups, that define set
of users that have access to specific machines, set of machines with specific file system access
and set of users with administrator privileges in specific domains. Netgroup is specified by
a name and its members are in format of triples where one field is for machine, second for
user and third for domain name.

objectClass=netgroup

attribute description

cn netgroup name
nsUniqueId netgroup unique UID

Table 5.3: Netgroup attributes

5.4 Services

There is not much to say about definition of service, as the name speaks for itself, each has
a name and runs on a different port.

objectClass=service

attribute description

cn service name
ipServicePort service port
ipServiceProtocol service protocol

Table 5.4: Service attributes

25

5.5 Autofsm maps

Autofsm map is a special feature used by automounter to automatically mount filesystems
in response to access operations by user programs. When automounter is notified about
attempts to access files or directories under selectively monitored subdirectory trees, it dy-
namically and transparently accesses local or remote devices.

objectClass=automountMap

attribute description

cn autofs entry key
automountInformation autofs entry value

Table 5.5: Autofs map attributes

5.6 Sudo rules

Sudo rules define users who have been granted some kind of access, commands that are
in scope of this rule and a hosts that this rules applies to. They can also contain some
additional information, but it is mainly only

”
who can do what and where“.

objectClass=sudoRule

attribute description

cn sudo rule name
sudoCommand command
sudoHost host
sudoUser user
sudoOption option
sudoRunAsUser run as certain user
sudoRunAsGroup run as certain group

Table 5.6: Sudo rule attributes

26

5.7 SSH hosts

SSH is a cryptographic network protocol for secure data communication, that allows us to
connect to remote machines. SSH hosts are then those machines we connect to. To connect
to a host we need a key, which is exactly what we store in the database.

objectClass=sshHost

attribute description

cn ssh host name
sshPublicKey public key
sshKnownHostExpire time until entry expirates

Table 5.7: SSH host attributes

27

Chapter 6

Querying tool

6.1 Program specification

Querying tool is a console application called sss query, its purpose is to query all kinds of
data, that are stored in SSSD database and offer its users results of these queries. Applica-
tion will be a part of tool package for administrating SSSD database. User can chose how
wide his query will be, he can search just in one particular domain or in all of them that
are available. It is possible to search for one exact entry, based on its unique identification,
which varies depending on a type of an entry we are searching for or can provide information
about all entries of the same type eg. users, groups etc. currently present in the database.
For each entry type, there is a default set of attributes, that will be printed out, but if user
wants to see just some of the attributes, he is free to notify the tool by adding them as an
optional flag and application will provide just these to him.

Implementation language of the application is C.

6.2 Basic information and user interface

Application is able to answer queries on these types of objects:

• users

• groups

• netgroups

• services

• autofsm maps

• ssh hosts

• sudo rules

• domains

• subdomains

28

For each item there is a predefined set of attributes, that will be showed to user, in case
he does not insert his own attributes as an optional parameter. Table 6.1 shows default
attributes for each entry type. Application has two mandatory (6.2) flags and one optional
(6.3) flag.

The application is a standard console application with no graphical user interface, all
the communication between user and the tool is done upon the insertion of application’s
parameters and flags at the time of executing it. Result or multiple results if so, are
displayed on standard output in plain text format, if there is no result or some problem
occurred during run of the application an error message will be displayed. After completion
of query, successful or not, an application is terminated, therefore if more queries are
requested, we need to run the application once again for each query.

The tool is run is format:

$# ./sss_query <object_type> <identification> <attributes_to output>

An example of communication between user and application looks like this:

Query on existing object

$# ./sss_query -u -N bambusekd -S uidNumber,name

$ === Showing requested user ===

UID Number(uidNumber): 00015487

Name(name): David Bambusek

Query on non existing object

$# ./sss_query -u I name=filutam

$ Object not found!

Application error

$# ./sss_query -s I gid=002587

$ You can use GID just for identifying groups!

29

Entry type SSSD internal macros attributes

users SYSDB NAME, SYSDB UIDNUM,
SYSDB GIDNUM, SYSDB HOMEDIR,
SYSDB SHELL

name, uidNumber,
guidNumber,
homeDirectory,
loginShell

groups SYSDB NAME, SYSDB GIDNUM name, gidNumber
netgroups SYSDB NAME, SYSDB UUID name, nsUniqueId
service SYSDB NAME, SYSDB USN,

SYSDB SVC PORT,
SYSDB SVC PROTO

name, entryUSN,
ipServicePort,
ipServiceProtocol

autofsm maps SYSDB AUTOFS ENTRY KEY,
SYSDB AUTOFS ENTRY VALUE

name, automountIn-
formation

ssh hosts SYSDB SSH HOST OC,
SYSDB SSH KNOWN HOSTS EXPIRE,
SYSDB SSH PUBKEY

sshHost, sshKnown-
HostsExpire,
sshPublicKey

sudo rules SYSDB SUDO CACHE AT CN,
SYSDB SUDO CACHE AT USER,
SYSDB SUDO CACHE AT HOST,
SYSDB SUDO CACHE AT COMMAND,
SYSDB SUDO CACHE AT OPTION

cn, sudoUser,
sudoHost,
sudoCommand,
sudoOption

domains name, provider, SYSDB VERSION name, provider,
version

subdomains SYSDB NAME,
SYSDB SUBDOMAIN REALM,
SYSDB SUBDOMAIN FLAT,
SYSDB SUBDOMAIN ID

name, realName,
flatName, domainID

Table 6.1: Default entry attributes

30

short opt. long opt. value format description example

-u
-g
-n
-s
-m
-t
-r
-d
-a

–user
–group
–netgroup
–service
–autofsmap
–sshhost
–sudorule
–domain
–subdomain

no value type of object
to be searched

-u

-N
-U
-G
-P
-I
-A

–name
–uid
–gid
–port
–ident
–all

[name]
[uid]
[gid]
[port]
[identificator]=[value]
no value

entry
identification

query all
objects of
chosen type

-N bambusekd
–uid=32568

Table 6.2: Mandatory flags

short opt. long opt. value format description example

-S –show [attribute name]+ If set, just specified
attributes will be
displayed, otherwise
attributes from
default set 6.1 will be
displayed.

-s name, mail

Table 6.3: Optional flags

31

6.3 Application architecture

6.3.1 Inicialization

The program starts by typical argument processing with help of library popt.h1, that
offeres very user friendly set of functions and preset macros to easily process arguments
given by user through command line. Next phase is to validate given arguments, because
logically there are many forbidden combinations, because each of object can be identified
just by few specified identifiers 6.4. To process more complex arguments as are attributes
that user wants to see on output so as to process type of identifier which will be used,
serves a function parse attributes, that simply parses all the arguments and depending
on input determines what kind of identification will be used and saves this information into
main system structure query tool ctx, which is used not only to store this information,
but mainly core data as is a link to confdb database, information about domains and list
of system databases, all mentioned later.

Object Identifiers

user name, UID
group name, GID
netgroup name
autofsm name
sudo rule name
service name, port
ssh host name
domain name

Table 6.4: Object identifiers

For a memory allocation we do not use standard C malloc() and his relative functions,
but a library talloc.h2, which is a hierarchical, reference counted memory pool system
with destructors, that brings easiness for otherwise complicated way how to allocate and free
memory in C, which in bigger project grows to very messy thing and can be a source of many
memory leaks. Thanks to hierarchical system, we only need to take care of deallocating the
root object, that is connected to its children by links created upon their allocation and the
library takes care of deallocating the whole connected tree of allocated memory.

As next we procede to connection to SSSD database, from here reffered to as
”
sysdb“,

by using function init domains() borrowed from another tool sss cache. This function
firstly establishes connection to confdb, which includes all neccessary information and set-
tings to enable connection to sysdb and as a next step finally connects to sysdb. All this
functionality is done by functions already implemented in SSSD3.

Attributes saved in SSSD database are identified by names(strings) written rather
in computer-like style, so for example UID number inside SSSD is identified as attribute
uidNumber. But these names would not be very nice for users to read on output, that is
reason why all attributes that sss query offers to be displayed are mapped to human read-
able form. For this approach we use a hash table, which key-value entries have format of:
<string, string>(SYSDB <attribute>, human readable SYSDB <attribute>)

1http://docs.fedoraproject.org/en-US/Fedora Draft Documentation/0.1/html/RPM Guide/ch15s02s02.html
2http://www.talloc.samba.org
3sssd/src/db/sysdb.h

32

Thanks to use of hash table, we can later profit on very fast and simple way how get the
right translation for SYSDB attribute to human readable form. To use and work with hash
tables, we use library called ding-libs(libdhash).

Now we are in stage where we already know what type of object we will be looking for
and we checked whether user also used correct identifier, so now the only thing that is left
is the search for object itself.

6.3.2 Query on basic objects

In this stage we get to querying itself. There are many functions already implemented in
SSSD that offer a way how to get information about objects stored in database. If we want
to make a query, we need to call some of lbd functions on the lowest level, since ldb is the
framework that allows us to work with database. The building stone of every functions
that gets data from sysdb is ldb search that is very similar to ldap search, so we need
to pass base dn, search scope and filters (3.1) as arguments to it and it will provide us
with results of search as its return value in special structure ldb result. This structure
contains a pointer to array of the results from the search and is easily accessible for further
work.

There are many functions that are wrappers around this basic and very general function
for most of object in sysdb, each of these functions has its own specialties as each object has
different unique identifier and needs to be treated differently in means of types of attributes
it has or where in sysdb is this object located. These functions are widely used is sss query
and in cases where these functions for certain object are not available, sss query uses basic
ldb search to get results.

The only difference between functions working with one certain object and those working
with whole class of objects is, that there have not been implemented any functions, to get
information about group of objects in SSSD, therefore ldb search is always used in this
case. We handle the results in basically the same way, we just have to iterate through
complete list of results.

6.3.3 Domain and subdomain information

Different approach is used with domains. Since we have all the data about domain or do-
mains stored in special structure since initialization, we do not need to make any additional
queries on sysdb.

It is quite easy with subdomains again, each structure with domain information in-
cludes also pointer to array of subdomains, that are in every view similar to domains, just
their location in tree hierarchy is one level lower than domains. It is worth mentioning,
that subdomains can again have subdomains, so there can be whole nested structure of
subdomains.

6.3.4 Printing results

Now when we already have our query results, we just need to display them to users. Because
sss query works as an console application and therefor lacks GUI, results are printed in text
form on standard output. If user did not specified attributes he would like to see on output
a default set of attributes will be printed out. In case of query on all objects of certain
type, results are printed out one by one, visibly divided and provided with label saying
from which domain they come from and what is their number in list of results.

33

Print function is quite straight forward, we have an array of attributes that will be
displayed on the output. We iterate through them and with each we first find the human
readable name, that will go on the output together with its sysdb internal name and of
course its value . This value is gathered from the result message that ldb search gave us
using another ldb function ldb msg find attr as string and then the complete informa-
tion about attribute is printed out.

Nevertheless the output is done just in a text form, sss query tries to format and display
results or any massages in a way that it looks nice and it is easy to take in. So little bit of

”
ascii graphic“4 is used to separate results and to create a header for each one, so the user

is provided with all the necessary information in understandable and easy to read form.

6.3.5 Errors

Generally there are two types of errors that can occur during run of the application. Firstly
are system errors, that are caused by wrong configuration of SSSD or because there was
some problem inside the application and secondly errors caused by wrong usage of the tool,
which means that user inserted wrong or non-existing arguments of used invalid combination
of arguments.

System errors

Super user privilege
Message:

”
You must be root in order to run this application!“newline All the tools in SSSD

can be run only by user with super user rights.

Confdb connection
Message:

”
Could not initialize connection to the confdb“

There was problem loading confdb, as default, SSSD expects confdb to be in /var/lib/sss/db,
if you want to change the path, use –with-db-path argument during SSSD build.

Domain connection
Message:

”
Could not initialize domains“

An occur with domains occurred, check your domain configuration.

Sysdb connection
Message:

”
Could not initialize connection to the sysdb“

Again, you need to check if sysdb database is correctly configured and set.

Locale set error
Message:

”
Error setting the locale“

Locales contain information on how to interpret and perform certain input/output and
transformation operations taking into consideration location and language specific settings,
therefore check you environment’s locale settings.

4Graphical object made just from ascii characters

34

Hash table error
Message:

”
Cannot add entry to hash table“

Some problem occurred with adding hash to hash table.

Argument errors

One or all objects
Message:

”
Please chose to search either for one object or for all, not both“

You can select either one object by specifying it using one of the <object type>from 6.2
or you can use -A to display all objects. Using both parameters will cause error.

Too many identifications
Message:

”
Please use one type of identification“

You have to use one type of identification from <identification>6.2, it is not possible to
use more than one.

Object not selected
Message:

”
Please chose one type of object“

You have to chose one type of object from <object type>6.2 to be searched. Identifica-
tion unspecified
Message:

”
Please enter identification of object you want to find“

You forgot to insert name/uid/gig/port of the object.

Direct identification mixed with indirect
Message:

”
Please chose just -N/-U/. . .(–name/–uid/. . .) or -I(–ident) option“’

You can use either direct object identification or indirect using -I, not both at the same type.

Wrong object identification
Message:You can use UID/GID/port number just for identifying users/group/services!
All the objects can be identified by their name, but just certain objects can be identified
using UID, GID or port number.

Invalid format of indirect identification
Message:

”
Please insert valid pair of attributes: name=value“

You did not follow the needed format of indirect identification.

Too many output attributes
Message:

”
Too many attributes to show“

At maximum, there are only 5 attributes that an object have. Therefore by inserting more
than 5, program will end with error.

Invalid indirect identification
Message:

”
Invalid identification type“

There are only options name, uidNumber, gidNumber or portService for indirect identifi-
cation and you used none of them.

35

6.4 Tests

Find user - all attributes

$# ./sss_query -u -N bambusekd

$# === Showing requested object ===

Name(name): bambusekd

UID number(uidNumber): 1063200001

GID number(gidNumber): 1063200001

Home directory(homeDirectory): /home/bambusekd

Shell(loginShell): /bin/sh

Find user - using FQ name

$# ./sss_query -u -N bambusekd@example.com

$# === Showing requested object ===

Name(name): bambusekd

UID number(uidNumber): 1063200001

GID number(gidNumber): 1063200001

Home directory(homeDirectory): /home/bambusekd

Shell(loginShell): /bin/sh

Find user - just UID and name

$# ./sss_query -u -N bambusekd -S uidNumber,name

$# === Showing requested object ===

UID number(uidNumber): 1063200001

Name(name): bambusekd

Find all users

$# ./sss_query -u -A

$# === Showing all users in domain example.com ===

=== entry: 0 === domain: example.com ===

Name(name): bambusekd

UID number(uidNumber): 1063200001

GID number(gidNumber): 1063200001

Home directory(homeDirectory): /home/bambusekd

Shell(loginShell): /bin/sh

=== entry: 1 === domain: example.com ===

Name(name): krausj

UID number(uidNumber): 1063200004

GID number(gidNumber): 1063200004

Home directory(homeDirectory): /home/krausj

Shell(loginShell): /bin/sh

36

Find all users - just UID and shell

$# ./sss_query -u -A -S uidNumber,loginShell

$# === Showing all users in domain example.com ===

=== entry: 0 === domain: example.com ===

UID number(uidNumber): 1063200001

Shell(loginShell): /bin/sh

=== entry: 1 === domain: example.com ===

UID number(uidNumber): 1063200004

Shell(loginShell): /bin/sh

Show domain info

$#./sss_query -d -N example.com

$# Domain name: example.com

Domain provider: ipa

Domain version: 0.14

Error - no object selected

$# ./sss_query

$# Please chose one type of object

Error - too many arguments

$#./sss_query -u -g

$# Please chose one type of object

Find non existing object

$#./sss_query -u -N smithj

$# === Object not found! ===

Find object in non existing domain

$#./sss_query -u -N bambusekd@fit.cz

$# === There is no domain fit.cz ===

37

Chapter 7

Conclusion

Reader of this thesis was introduced with overall information about databases, their dif-
ferent models with focus on those that are used the most these days, but we also did not
forget to mention those types that are not that widely used, but are slowly finding their
place in the modern, and in every moment developing, world of computers. We stopped for
more detailed information about LDAP and LDB and moved to description of SSSD, its
architecture, functions and its database.

The main output of this thesis is a tool for querying SSSD database, which is able to
query all different types of data stored in SSSD database and to offer SSSD administrators
the important information about them. This tool was developed with emphasis on very easy
usage and therefore offers very simple UI which allows very complex control of application.
I strongly believe that this tool will ease work of many people dealing with SSSD and
provide all the functionality that was expected.

This application offers a lot of functionality, but there is a space to merge it with other
already existing tools for SSSD administration so as with other tools, that has not yet
been developed and might be needed. Therefore its current stage might not be ultimate
application will change in future as will SSSD with newer versions that will be introduced.

38

Bibliography

[1] C.J. Date. An Introduction to Database Systems. Addison-Wesley Publishing
Company, 1979. ISBN 0-201-01530-7.

[2] Red Hat. Fedora documentation. Red Hat.

[3] Jakub Hrozek. SSSD Wiki - Design documents. Red Hat.

[4] Jakub Hrozek and Martin Nagy. Freeipa and sssd. Presentation at Red Hat
Developers’ Conference, 2009.

[5] Richard D. Irwin. Database Management - Theory and Application. Irwin, 1990.
ISBN 0-256-07829-7.

[6] ITU-T. The directory - overview of concepts, models and services. X.500 (2005),
August 2005.

[7] ITU-T. The directory: Models. X.501 (2005), August 2005.

[8] Peter Neubauer. Graph databse, nosql and neo4j, May 2010.

[9] Pramod Sadalage and Martin Fowler. NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence. Addison-Wesley, 2012. ISBN 0-321-82662-0.

[10] Simo Sorce. Ldb and the ldap server in samba4. Samba experience, 2006.

[11] Alex Tatiyants. Xml databases, 2012.

[12] M. Wahl, T. Howes, and S. Kille. Lightweight directory access protocol, 12 1997.
RFC 2251.

[13] Wikipedia. Graph database, 2013. [Online; accessed 22-April-20013].

[14] Wikipedia. Relational database, 2013. [Online; accessed 22-April-20013].

[15] Kim Wong. Introduction to object-oriented databases. MIT Press, 1948.
ISBN 0262111241.

39

